quarta-feira, 29 de junho de 2011

Trabalho de Física

Força Elétrica

Charles Augustin de Coulomb foi um françês que , no fim do século XVlll, usando uma balnaça de torção, formulou uma equação capaz de analisar a força elétrica.Essa equação da força elétrica é conhecida como lei de Coulomb.
A primeira lei de Coulomb – Esta lei diz respeito à intensidade das forças de atração ou de repulsão que agem em duas cargas elétricas puntiformes (cargas de dimensões desprezíveis), quando colocadas em presença uma da outra.
Considere duas cargas elétricas puntiformes, Q1 e Q2 , separadas pela distância d. Se os sinais dessas cargas forem iguais, elas se repelem; se forem diferentes, se atraem.

A força elétrica é originada pela interação de uma carga elétrica com outras cargas elétricas, que podem ter sinal positivo ou negativo.Esta força pode ser de repulsão ou atração, conforme os sinais das cargas; se de sinais contrários se atraem as de sinais iguais se repelem.
Fórmula de força entre duas cargas:
Onde:
F = força elétrica.
K= constante eletrostática( para cargas situadas no vácuo).
Q= carga elétrica.
d= distancia entre as cargas.
Sabemos que há atração e repulsão entre corpos. Verificamos também que essa interação se dá a distância. Tal interação chamamos de força elétrica.
A determinação quantitativa da força elétrica era fator imprescindível para a evolução da eletrostática. No século XVIII, foram feitos questionamentos sobre a maneira com que a intensidade da força elétrica alterava-se com a variação da distância e com a intensidade da carga elétrica de cada um dos corpos. A interação elétrica entre cargas elétricas sempre ocorre aos pares, ao mesmo tempo e com a mesma intensidade. Segue o princípio da ação e reação.
Exemplo:
Duas cargas puntiformes iguais, Q1 = 5.10-6 e Q2= -4.10-6 se encontram no vácuo e estão separadas por uma distância de 3 metros.Determine a força elétrica existente entre elas.




Campo elétrico
Os efeitos elétricos que ocorrem nas proximidades de cargas elétricas são associados à existência de um campo elétrico no local, este interage com a carga de prova.
Um exemplo típico é a interação do cabelo de uma pessoa com a tela de uma televisão convencional, pois as cargas elétricas da televisão interagem com os cabelos deixando-os eriçados.
É importante perceber que um campo elétrico só pode ser detectado a partir da interação do mesmo com uma carga de prova, se não existir interação com a carga significa que o campo não existe naquele local.




Campo elétrico é um vetor assim vamos estudar a direção sentido e intensidade do campo.
Quando o campo elétrico é criado em uma carga positiva ele, por convenção, terá um sentido de afastamento.
Quando o campo elétrico é criado em uma carga negativa ele, por convenção, terá um sentido de aproximação.





Que fique claro que o sentido do campo elétrico depende exclusivamente do sinal da carga elétrica.
A intensidade de um campo elétrico E, sempre considerando a carga de prova puntiforme, pela formula: E=f/q , assim voltando para a definição de campo podemos dizer que ele dependerá diretamente a força elétrica entre as cargas e inversamente à carga de prova.
Unidades de campo elétrico.



Partido de que:


e que
, após alguns cálculos chegamos que :

, sendo que q2 é a carga que gera o campo elétrico, d a distância entre as cargas e k a constante elétrica do meio ( 9,0 . 109 unidades do SI).


Corrente elétrica
Corrente elétrica, entender este conceito facilita o entendimento de muitos fenômenos da natureza. A corrente elétrica, e a eletricidade propriamente dita, estão presentes a todo tempo ao nosso redor e até em nós mesmos.
Na natureza: o relâmpago, uma grande descarga elétrica produzida quando se forma uma enorme tensão entre duas regiões da atmosfera.

No corpo humano: impulsos elétricos do olho para o cérebro. Nas células da retina existem substâncias químicas que são sensíveis à luz, quando uma imagem se forma na retina estas substâncias produzem impulsos elétricos que são transmitidos ao cérebro.
Além destes exemplos, podemos identificar vários aparelhos e utensílios em nossa casa que foram construídos a partir do domínio da eletricidade: o ferro de passar roupas, o chuveiro, a lâmpada e muitos outros.
Para entendermos o funcionamento destes aparelhos vamos definir o conceito de corrente elétrica.

Se um condutor é ligado aos pólos do gerador os elétrons do pólo negativo se movimentam ordenadamente para o pólo positivo, esse movimento ordenado dos elétrons é denominado corrente elétrica.
Por convenção, o sentido da corrente elétrica é contrário ao do movimento dos elétrons no condutor.




A quantidade de carga elétrica ∆Q que atravessa uma seção transversal do condutor por um determinado intervalo de tempo ∆t determina a intensidade de corrente elétrica.

i = ∆Q / ∆t

Onde:

i = intensidade da corrente elétrica
∆Q = quantidade de carga elétrica
∆t = intervalo de tempo
A unidade de medida utilizada para corrente elétrica é o Coulomb/segundo (C/s), esta unidade recebe o nome de ampère (A).

Exemplo: Na seção transversal de um condutor passa uma quantidade de carga elétrica
∆Q = 8 . 10-4 C no intervalo de tempo ∆t = 2 . 10-2 s. Determine a intensidade da corrente elétrica que atravessa o condutor.
Resolução:

A intensidade da corrente elétrica é dada por:
i = ∆Q / ∆t
i = 8.10-4/2.10-2
i = 4.10-2ª

A corrente elétrica pode ser classificada em:

a) Corrente eletrônica – Constituída pelo deslocamento dos elétrons livres. Ocorre, principalmente, nos condutores metálicos.



b) Corrente iônica – Constituída pelo deslocamento dos íons positivos e negativos, movendo-se simultaneamente em sentidos opostos. Ocorre nas soluções eletrolíticas (soluções de ácidos, sais ou bases) e nos gases ionizados (lâmpadas fluorescentes).



Nas soluções eletrolíticas, as partículas portadoras de carga são os íons, que se movimentam sob a ação da força do campo elétrico. Os íons positivos movimentam-se no mesmo sentido do campo elétrico ; enquanto os negativos movimentam-se no sentido oposto.
Tipos de corrente elétrica:
Consideram-se dois tipos de corrente elétrica:

a) Corrente contínua (CC) – é aquela cujo sentido permanece constante. Quando, além do sentido, a intensidade também se mantém constante, a corrente é chamada corrente contínua constante. É o que ocorre, por exemplo, nas correntes estabelecidas por uma bateria de automóvel e por uma pilha.

b) Corrente alternada (CA) – é aquela cuja intensidade e cujo sentido variam periodicamente. Esse é o caso das correntes utilizadas em residências, que são fornecidas pelas usinas hidrelétricas, em que temos uma corrente alternada de freqüência 60 ciclos por segundo.



Efeitos da corrente elétrica

Os principais efeitos são: efeito térmico,quimico, magnético e joule.

Efeito qumico: ocorrem em determinadas reações qumicas quando elas são pecorridas por uma corrente elétrica. Esse efeito é muito utilizado no recobrimento de metais.

Efeito térmico: surge dos inumeros choques dos életrons de um condutor quando esse é percorrido por uma corrente elétrica. Quando os atomos recebem energia, eles passam a vibrar com mais intensidade e quanto maior a vibração maior é a temperatura do condutor, e esse aumento de temperatura é observado com o aquecimento de condutor.ex: chuveiros elétricos.

Efeito magnético: se manifesta quando há o aparecimento de um campo magnético na região proxima de onde se aplica a corrente elétrica.

Efeito fisiologico: acontece quando ocorre a passagem de corrente elétrica pelo organismo do seres vivos. Essa atua no sistema nervoso fazendo com que o corpo tenha contrações musculares e com isso chamamos de choque elétrico.

Tensão eletrica

Tensão elétrica é a diferença de potencial elétrico entre dois pontos. Sua unidade de medida é o volt, em homenagem ao físico italiano Alessandro volta.
Por analogia, a tensão elétrica seria a “força” responsável pela movimentação de elétrons: o potencial elétrico mede a força que uma carga elétrica experimenta no seio de um campo elétrico, expressa pela lei de coulomb, portanto a tensão é a tendência que uma carga tem de ir de um ponto para o outro. Normalmente toma-se um ponto que se considera de tensão zero e mede-se a tensão do resto dos pontos relativos a este.
A tensão elétrica entre dois pontos, ou seja [(+) e (-)] é definida matematicamente como a integral de linha do campo elétrico:



Para facilitar o entendimento da tensão elétrica pode-se fazer um paralelo desta com a pressão hidraulica. Quanto maior a diferença de pressão hidráulica entre dois pontos, maior será o fluxo, caso haja comunicação entre estes dois pontos. O fluxo (que em eletrodinâmica seria a corrente elétrica) será assim uma função da pressão hidráulica (tensão elétrica) e da oposição à passagem do fluido( resistencia elétrica) Este é o fundamento da lei de ohm, para a corrente continua:
onde:
• R = Resistência (ohms)
• I = Intensidade da corrente (amperes)
• U = Diferença de potencial ou tensão (volts)
Em corrente alternada substitui-se a resistência pela impedância:
u=z.i
onde:
• Z =impedância ( ohms)
Pelo metodo fasorial, em corrente alternada, todas as variáveis da equação são complexo. A impedância representa, além da resistência a passagem de corrente elétrica, também o deslocamento angular na forma de onda produzido pelo equipamento (capacitores e bobinas ou indutores)
Podemos resumir em tais fórmulas matemáticas que a tensão eléctrica seria a diferença de potencial elétrico, entre dois pontos, que geraria uma força capaz de movimentar os elétrons entre esses dois pontos distintos no espaço. O valor numérico desta grandeza física, medida em volts, seria então o resultado da multiplicação entre o valor da resistência (em ohms) e o valor da corrente (em amperes).



Geradores e receptores elétricos
• Gerador: Transforma uma energia qualquer em energia elétrica. Exemplos: Pilhas, baterias e etc.
• Receptor: Transforma energia elétrica em outra forma, não podendo ser transformada em calor. Exemplos: Motor elétrico, baterias e etc,

Gerador
Tem uma força eletromotriz - f.e.m. (E)
Energia Química
Pt = Pu + Pd
Pt = E . i
Pu = U . i
Pd = r . i2
U = E - r . i
Rendimento (N) - N = U / E
Gráfico: Reta decrescente;
E = Maior ddp do gerador;

Receptor
Tem uma força Contra motriz - f.c.e.m. (E)
Energia Mecânica
Pt = Pu + Pd
Pt = U . i
Pu = E . i
Pd = r . i2
U = E + r . i
N = E / U
Gráfico: Reta crescente;
E = Menor ddp do receptor;

Aparelhos eletronicos

A origem dos aparelhos eletrônicos remonta às pesquisas de Thomas Alva Edison, que em 1883 descobriu o que chamamos hoje de "Efeito Edison", ou efeito termiônico. Ele demonstrou a formação de uma corrente elétrica fraca no vácuo parcial entre um filamento aquecido e uma placa metálica. A corrente era unidirecional e cessava se a polaridade do potencial entre o filamento e a chapa fosse invertida. Ficou comprovado que os transmissores da eletricidade estavam eletrizados. Mais tarde, estes transmissores receberam o nome de elétrons.
Em 1887, Heinrich Hertz, durante as suas experiências com arcos voltaicos, observou que a luz emitida durante a descarga de alta voltagem de um arco elétrico influía consideravelmente na descarga produzida por outro arco menor, colocado diante dele. No momento em que o menor deixava de receber a luz da descarga do maior, produzia-se uma faísca muito mais curta do que enquanto iluminado. Iniciou-se assim o estudo da Fotoeletricidade.
Em 1888, William Hallwachs demonstra que um eletroscópio com esfera de zinco perde sua carga negativa se a esfera for exposta à luz ultravioleta. O fenômeno tornou-se conhecido como "Efeito Hallwachs" e determinou serem negativas (elétrons) as cargas emitidas pela esfera de zinco sob a ação do ultravioleta.
Elster e Geitel, ambos físicos alemães, estudam o fenômeno e observam (1889) que os metais alcalinos sódio e potássio emitem elétrons também sob influência da luz comum. Trabalharam juntos pesquisando a ionização da atmosfera e o efeito fotelétrico. Descobriram em 1899 o fenômeno da descarga de um eletroscópio na proximidade de um radioelemento e enunciaram, em decorrência dessa observação, a Lei do Decrescimento Radioativo.
Construíram a primeira célula fotoelétrica de utilização prática (1905) de elementos alcalinos; criaram o primeiro fotômetro fotoelétrico e um transformador Tesla.
Em 1897, J.A. Fleming, físico inglês, faz a primeira aplicação prática do "Efeito Edison". É considerado um dos pioneiros da radiotelegrafia. Usa a propriedade unidirecional da corrente movida a elétrons para criar um detector de sinais telegráficos. A válvula de Fleming (foto 1) é a origem do tubo díodo (1904). Esse aparelho foi a origem de todas as válvulas utilizadas em telecomunicações. Criou também um ondímetro, um amperímeto térmico para correntes de alta freqûencia e um manipulador de indução variável . Deve-se a ele a regra, hoje clássica, dos "três dedos", que dá o sentido das forças eletromagnéticas. Essa regra é usada para a determinação do campo magnético, a partir do produto vetorial da carga e do campo elétrico.


Lee de Forest, inventor norte-americano, se lançou à promoção da radiocomunicação, organizando uma companhia telegráfica. Fracassou nessa primeira tentativa. Em 1906 inventa a lâmpada de três eletrólitos ou tríodo. Acrescenta um terceiro eletrólito (grade) à válvula de Fleming. A utilidade dessas válvulas como geradores, amplificadoras e detectoras, foi aos poucos impondo-se. Em 1910, transmitiu a voz do maior tenor de todos os tempos, Caruso. Mas só com a primeira Guerra Mundial sua invenção tornou-se amplamente utilizada e foi produzida em larga escala. Inventou também, o fonofilme, aparelho precursor na indústria do sistema falado.
Jonathan Zenneck, físico alemão, contribuiu para o desenvolvimento na radiotelefonia e das técnicas de alta frequência na Alemanha. Inventou o medidor de ondas elétricas (1899) e um processo para multiplicação das frequências (1900). Em 1905 desenvolve o Tubo de Braun e cria o osciloscópio catódico, origem dos cinescópios dos atuais aparelhos de televisão. Data de 1907 sua teoria da difusão das ondas elétricas. Depois da Segunda Guerra Mundial, construiu a primeira estação ionosférica alemã.
Edwin Howard Armstrong, engenheiro eletrônico norte-americano, tem como invenções no campo da radiotelefonia: o circuito regenerativo (1912), o circuito super-heteródino (1918) e o circuito super-regenerativo (1920). Desenvolveu um sistema radiofônico de frequência modulada, diminuindo as interferências nas transmissões e aumentando o nível de som.
A partir das invenções de Vladimir Zworykin, engenheiro e inventor russo, que se desenvolveu todo o sistema eletrônico da televisão moderna. É o primeiro a conseguir transformar uma imagem em uma corrente elétrica. Teve como importante trabalho a aplicação da eletrônica à medicina.
Inventor do iconoscópio, ponto de partida para o sistema de televisão, colaborou na elaboração de outros equipamentos eletrônicos, como o microscópio eletrônico.
Sir Robert Alexander Watson-Watt, físico escocês, concebeu um sisema de detecção de um objeto e de medida da distância por intermédio de ondas eletromágnéticas (1925). Dessa forma nasceu o RADAR (RAdio Detection And Ranging), cujas primeiras estações foram instaladas na Inglaterra.
Nos anos seguintes os aparelhos que produzem e detectam ondas eletromagnéticas - sobretudo curtas e ultra curtas - são desenvolvidos e as teorias de modulação aprofundadas. Em 1927 Carson empreende estudos matemáticos relativos ao transporte de um sinal por uma corrente elétrica portadora (modulação). A modulação de freqüência é prevista por Armstrong em 1928. A modulação de uma mesma onda portadora por várias comunicações telefônicas simultâneas permite o surgimento da técnica das comunicações múltiplas com um mesmo suporte material, colocando o telefone à disposição do grande público.
Blumldin e Schönberg desenvolvem em 1930 um sistema comercial para tratar a imagem elétrica produzida pelo tubo de Zworykin para permitir o transporte à distância e a reconstituição local.
Manfred Barthélemy, físico francês, é considerado um dos criadores da televisão na França. Dedicou-se primeiro à criação de aparelhos de medição, e depois à radiofonia. Durante a Primeira Guerra Mundial, construiu instrumentos emissores e participou da instalação do centro de comunicação na Torre Eiffel. Interessou-se em seguida pela televisão, aperfeiçoando o dispositivo do escocês John Baird, e foi encarregado de uma emissão regular de TV em 1935. Por ocasião da Segunda Guerra Mundial, realizou pesquisas sobre radares. Mais tarde, criou o isoscópio, um tubo aperfeiçoado para a TV.
Manfred e René elaboraram a transformação da imagem elétrica em imagem lumisosa. Câmaras, amplificadores, geradores de sinais de imagem, sinais de linha, sinais de sincronização, multiplicadores de frequência são desenvolvidos e produzidos.
Apesar do desenvolvimento de computadores digitais estar enraizado no ábaco e em outros instrumentos de cálculo anteriores, foi creditado a Charles Babbage o design do primeiro computador moderno. O primeiro computador totalmente automático foi o Mark I, ou Automatic Sequence Controlled Calculator, iniciado em 1939 na Universidade de Harvard, por Howard Aiken, enquanto o primeiro computador digital eletrônico, ENIAC (foto 2) - Electronic Numeral Integrator and Calculator - que usava centenas de válvulas eletrônicas, foi completado em 1946, na Universidade da Pensilvânia.



O UNIVAC (UNIversal Automatic Computer) se tornou em 1951 o primeiro computador a lidar com dados numéricos e alfabéticos com igual facilidade. Também foi o primeiro computador disponível comercialmente, usado no censo americano da década de 50.
Os computadores de primeira geração foram suplantados pelos transistorizados, entre o fim da década de 50 e início da década de 60. Esses computadores de segunda geração já eram capazes de fazer um milhão de operações por segundo. Por sua vez, foram suplantados pelos computadores de terceira geração, com circuitos integrados (foto 3), de meados dos anos 60 até a década de 70. A década de 80 foi caracterizada pelo desenvolvimento do microprocessador e pela evolução dos minicomputadores, microcomputadores e computadores pessoais, cada vez menores e mais poderosos.





Nomes: Ítalo, Saygon, Rafael, Walison
Serie:3 ano B

Nenhum comentário:

Postar um comentário